The synthesis of [bis(trifluoromethyl)amino-oxylsilacyclobutanes

Graham E. Ducker and Anthony E. Tipping*

Chemistry Department, University of Manchester Institute of Science and Technology, Manchester M60 IQD (UK)

(Received February 16, 1993; accepted May 25, 1993)

Abstract

The silacyclobutanes $\overline{CH_2CH_2CH_2S}$ (2), X = Cl, and (3), X = Me, are attacked by the oxyl (CF₃)₂NO. (1) at the 3-position leading to the monosubstituted products $(CF_3)_2NOCHCH_2SLI\\XCH_2$ (8), $X = Cl$, and (9), $X = Me$, and a minor amount of the disubstituted product $(CF_3)_2$ NOCHCH₂SiMeClCHON(CF₃)₂ (10) which arises via the silacyclobutene CH₂CH=CHSiMeCl (17). With the disilacyclobutane CH₂SiMe₂CH₂SiMe₂ (4), the only silicon containing products isolated are $(CF_3)_2NOSiMe_2CH_2SiMe_2F (13)$ and $FSiMe_2CH_2SiMe_2F (12)$, which are formed via attack of oxyl 1 at a ring CH₂ group. The 1-substituted 1-silacyclobutanes $\overline{CH_2CH_2CH_2CH_3}$ (28), R = Cl, $R^1 = ON(CF_3)$, (29) , $R = R^1 = ON(CF_3)$, and (27) , $R = Me$, $R^1 = ON(CF_3)$, are conveniently prepared by reaction of the mercurial $[(CF₃)₂NO]₂Hg (26)$ with the silacyclobutanes 2 and 3. Reaction of the 3-substituted silacyclobutane 9 with anhydrous hydrogen chloride gives the open-chain, substituted dialkyldichlorosilane $(CF_3)_2$ NOCHMeCH₂SiMeCl₂ (14), while treatment with hydrochloric acid affords a low molecular weight polysiloxane (15) derived from dichlorosilane 14.

Introduction

It has been reported that attack of the oxyl (CF_3) , NO. (1) on the methylsilanes Me_nCl_{4-n} gave unstable silyl esters $X_3SiCO_2N(CF_3)_2$ $(X_3 = Cl_3, MeCl_2, Me_2Cl$ and $Me₃$) [1] whilst attack on the alkyltrihalogenosilanes $RSiX_3$ (X = Cl and F) [2] and the dialkyldichlorosilane $RR¹SiCl₂$ [2, 3] resulted in replacement of the alkyl hydrogen by the $(CF_3)_2NO$ group. With the silanes $RSiX_3$ and R_2SiCl_2 , positions α to silicon are deactivated towards attack and the α -substitution products (CF_1) , NOCHR¹Si are thermally unstable and rearrange to α -aminoalkoxysilanes $(CF_3)_2NCHR^1OSi \in [2,$ 41.

In a continuation of a study into the preparation and reactions of silanes containing the $(CF_3)_2NO$ group, methods for the introduction of the $(CF_3)_2NO$ group into silacyclobutanes have been investigated.

Experimental

Starting materials

The oxyl **1** was prepared by oxidation of the hydroxylamine $(CF_3)_2NOH$ 5 with silver(II) oxide [5] and this was converted into the mercurial $[(CF_3)_2NO]_2Hg$ 26 by reaction with an excess of mercury *in vacua [6].* The reactant silacyclobutanes were prepared by standard methods (yields refer to pure compounds obtained by fractional distillation), i.e. (i)

 $CICH_2CH = CH_2 + HSiCl_2X \xrightarrow{H_2PtCl_6}$

ClCH,CH,CH,SiCl,X

$$
(X = Cl, 30\%; X = Me, 34\%) [7]
$$
\n
$$
\xrightarrow[E_{12}O]{M_g} \widetilde{CH}_2CH_2CH_2SiClX (2)
$$
\n
$$
(X = Cl, 55\%), (3) (X = Me, 33\%) [8]
$$
\nand (ii)\n
$$
Me_2SiClCH_2Cl \xrightarrow{THF} \widetilde{CH}_2SiMe_2CH_2SiMe_2 (4) (38\%) [9].
$$

General techniques

The reactions involving oxyl **1** and mercurial 26 were carried out *in vacuo* in Rotaflo tubes (c. 300 cm³ and $c. 100 \text{ cm}^3$, respectively). Products were separated by fractional condensation in vacuo or by GLC methods [Perkin-Elmer F21 or Aerograph Autoprep machines using columns (3.5-10 m) packed with Silicone SE30 or OVI oils $(10\% - 20\% \text{ w/w})$ on Celite as stated in the text] and were examined by IR spectroscopy (Perkin-Elmer 257 instrument), 'H NMR spectroscopy [Perkin-Elmer RlO (60.0 MHz) or Varian Associates HA100

^{*}Author to whom correspondence should be addressed.

^{0022-1139/94/\$07.00 0 1994} Elsevier Sequoia. All rights reserved *SSDI* 0022-1139(93)02941-7

(100.0 MHz) spectrometers; internal reference tetramethylsilane], ¹⁹F NMR spectroscopy [Perkin-Elmer RlO (56.46 MHz) or Varian Associates HA100 (94.12 MHz) instruments; external reference trifluoroacetic acid] and mass spectrometry (AEI MS902 instrument with an electron beam energy of 70 eV). The NMR spectra were recorded using neat liquids or solutions in $CDCl₃$ (as stated in the text); chemical shifts to low field of reference are designated positive.

The molecular weight of polysiloxane 15 was determined by vapour-phase osmometry (Hitachi Perkin-Elmer 115 instrument) and boiling points were determined by Siwoloboff's method.

Reactions of bis(trifluoromethyl)amino-oxyl (1) with *silanes*

(a) 1, I-Dichloro-I-silacyclobutane (2)

A mixture of oxyl 1 (3.36 g, 20.0 mmol) and silane 2 (2.82 g, 20.0 mmol), kept at room temperature (3) h), gave only volatile material (5.99 g) which on fractional condensation *in vacuo* afforded (i) a -196 °C fraction (0.21 g), identified (IR spectroscopy) as a mixture of N,N-bis(trifluoromethyl)amine (6) and perfluoro-(2,4 dimethyl-3-oxa-2,4-diazapentane); (ii) N, N-bis(trifluoromethyl)hydroxylamine (5) $(1.66 \text{ g}, 9.82 \text{ mmol}, 49\%)$ which condensed at -78% °C; and (iii) a combined -23 °C and 0 °C fraction (4.12 g) which was separated by preparative-scale GLC $(6 \text{ m OVI at } 95 \text{ °C})$ into its two components, i.e. unchanged silacyclobutane 2 (1.57 g, 11.13 mmol, 56.6% recovered) and 3-[bis(trifluoromethyl)amino-oxyl-l,l-dichloro-l-sila~ clobutane (8) (nc) (2.38 g, 7.7 mmol, 87%) (Analysis: Found: C, 19.8; H, 1.8; F, 37.1%. $C_5H_5Cl_2F_6NOSi$ requires: C, 19.5; H, 1.6; F, 37.0%), b.p. 173 °C. ¹H NMR (neat) δ : 4.89 (pentet, 1H, CHO, $J=7$ Hz); 2.20 (d, 4H, 2CH₂Si) ppm. ¹⁹F NMR δ : +9.80 [s, β -ON(CF₃)₂] ppm. MS *m*/z: 266/268/270 [1.0%, $(M - C₃H₅]+$; 150 (4.5, C₂HF₅NO⁺); 139/141/143 (90.8, $C_3H_5Cl_2Si^+$; 117/119/121 (7.3, Cl_2FSi^+); 112/114/116 $(53.9, CH₂Cl₂Si⁺)$; 99/101/103 (15.0, HCl₂Si⁺); 69 (56.7, CF_3^+ ; 63/65 (32.1, ClSi⁺); 41 (100.0, C₃H₅⁺).

(b) I-Chloro-I-methyl-1-silacyclobutane (3)

A mixture of oxyl 1 (3.36 g, 20.0 mmol) and silane 3 (2.41 g, 20.0 mmol), kept at room temperature (1.5) h), gave only volatile material (5.75 g) which on separation by fractional condensation *in vacua* afforded (i) a -196 °C fraction (0.15 g), which was shown (IR spectroscopy) to be a mixture of amine 6 and perfluoro-2-azapropene (7); (ii) $a - 78$ °C fraction (2.27 g), which was shown [IR spectroscopy and GLC methods (3.5 m SE30 at 50 °C)] to consist of hydroxylamine 5 (1.65) g, 9.8 mmol, 49%) and unchanged silane 3 (0.62 g, 5.1 mmol, 25% recovered); (iii) a colourless liquid (1.89 g) which condensed at -23 °C and was separated by preparative-scale GLC (6 m OVI at 90 "C) into its two components, i.e. unchanged silane 3 (0.62 g, 5.2 mmol, 26% recovered) and 3-[bis(trifluoromethyl)amino-oxy]- 1-chloro-1-methyl-1-silacyclobutane (9) (nc) (1.23 g, 4.3 mmol, 44%) (Analysis: Found: C, 25.2; H, 2.9; F, 39.5%. $C_6H_8ClF_6NOSi$ requires: C, 25.0; H, 2.8; F, 39.7%), b.p. 159 °C. ¹H NMR (neat) δ : 4.65 (pentet, 1H, CHO, $J=7$ Hz); 1.80 (complex, 4H, 2CH₂Si); 0.70 and 0.61 (s, 3H, CH₃Si) ppm. ¹⁹F NMR δ : +9.9 [s, β -(CF₃)₂NO] ppm. MS *m/z:* 246/248 (17.4%, C,H,ClF,NOSi'); 158/ 160 (7.9, $C_5H_8CIF_3NOSi^+$); 130 (9.9, $C_2F_4NO^+$); 119/ 121 (100.0, C₄H₈ClSi⁺); 97/99 (26.2, CH₃ClFSi⁺); 92/ 94 (96.1, $C_2H_5CISi^+$); 79/81 (68.3, CH_4ClSi^+); 69 (68.3, CF_3^+ ; 63/65 (75.8, ClSi⁺); 43 (59.4, CH₃Si⁺); and (iv) a colourless liquid (1.44 g) which was separated by preparative-scale GLC (6 m OVI at 90 $^{\circ}$ C) into its two components, i.e. compound 9 (1.08 g, 3.7 mmol, 38%) and a mixture of 2,3-bis[bis(trifluoromethyl)amino-oxy]- 1-chloro-1-methyl-1-silacyclobutane (10) and 5-bis(trifluoromethyl)amino-4-bis(trifluoromethyl)amino-oxy-Z chloro-2-methyl-2-silatetrahydrofuran (11) (0.36 g, 0.8 mmol, 8%) (Analysis: Found: C, 21.0; H, 1.6%. Calc. for $C_8H_7CIF_{12}N_2O_2Si$: C, 21.1; H, 1.5%). ¹H NMR (neat) 6: 6.20 (complex, 0.33H, ring 0-CH); 4.05 (complex, 1.67H, CHO); 1.20 (complex, 2H, CH,Si); 0.38 (s, 3H, CH₃Si) ppm. ¹⁹F NMR δ : +20.5 [s, 1F, $(CF_3)_2N$]; +8.5 [s, 3F, β - $(CF_3)_2NO$]; +7.8 [s, 2F, α - $(CF_3)_3NO$] ppm. MS m/z : 302/304 {1.3%, [M- $(CF_3)_2N$ ⁺}; 286/288 {3.9, $[M - (CF_3)_2NO]$ ⁺}; 246/248 $(41.3, C₃H₃ClF₆NOSi⁺)$; 107/109 $(2.8, C₂H₄ClOSi⁺)$; 94/96 (3.1, CH₃ClOSi⁺); 69 (100.0, CF₃⁺).

(c) 1, *1,3,3-Tetramethyl-1,3-disilacyclobutane (4)*

A mixture of oxyl 1 (3.36 g, 20.0 mmol) and silacyclobutane 4 (5.76 g, 40.0 mmol), kept at room temperature (5 h), gave volatile material (8.40 g) which on fractional condensation *in vacuo* afforded (i) $a - 196$ "C fraction identified (IR spectroscopy) as carbon dioxide (0.16 g, 3.6 mmol, 18%) (Analysis: Found: M, 44. Calc. for CO₂: M, 44); (ii) a -120 °C fraction (1.48) g), shown by IR spectroscopy and GLC methods (4 m SE30 at 30 °C) to contain mainly amine 6 (0.52 g, 3.4) mmol, 17%) and azapropene 7 (0.48 g, 3.8 mmol, 19%) (iii) hydroxylamine 5 (1.21 g, 7.2 mmol, 36%) which condensed at -78 °C; (iv) a -23 °C fraction (4.93 g) which was shown by GLC methods (2 m SE30 at 60 "C) to consist mainly of unchanged disilacyclobutane 4 (4.80 g, 33.0 mmol, 82% recovered); and (v) a 0 °C fraction (0.62 g) which was combined with the nonvolatile residue (0.72 g) and separated by preparativescale GLC (10 m SE30 at 120 $^{\circ}$ C) to give 2,4-difluoro-2,4-dimethyl-2,4-disilapentane (12) $(0.07 \text{ g}, 0.4 \text{ mmol})$, 6%) (Analysis: Found: C, 35.3; H, 8.5; F, 22.5%. Calc. for $C_5H_{14}F_2Si_2$: C, 35.7; H, 8.4; F, 22.6%) and 2-[bis (trifluoromethyl) amino-oxy]-4-fluoro-2,4 - dimethyl-2,4_disilapentane (13) (nc) (1.10 g, 3.6 mmol, 51%)

(Analysis: Found: C, 26.8; H, 4.7; F, 41.8; N, 4.3%. $C_7H_{14}F_7NOSi_2$ requires: C, 26.5; H, 4.4; F, 42.1; N, 4.4%), b.p. 166 °C. ¹H NMR (neat) δ : 0.48 (complex, 2Me₂Si and CH₂Si) ppm. ¹⁹F NMR δ : +8.5 [s, 6F, (CF,),NO]; -75.2 (Sept., lF, SiF, *J=S.O Hz)* ppm. MS m/z: 302 [8.2%, $(M - CH_3)^+$]; 153 (37.6, $C_4H_{11}F_2Si_2^+$); 149 (100.0, $C_5H_{14}FSi_2^+$); 141 (57.9, $C_3H_{11}F_2Si_2^+$); 139 $(22.0, \text{ C}_3\text{H}_9\text{F}_2\text{Si}_2^{\text{+}}); 77 (43.9, \text{ C}_2\text{H}_6\text{FSi}^{\text{+}}); 73 (31.5,$ $C_3H_9Si^+$; 69 (29.7, CF_3^+); 63 (17.2, CH_4FSi^+); 47 (15.7, FSi').

Reactions of 3-[bis(trijhtoromethyl)amino-oxy]-l-chloro-I-methyl-I-silacyclobutane (9)

(a) with hydrogen chloride

A mixture of hydrogen chloride (1.08 g, 30.0 mmol) and silacyclobutane 9 (2.88 g, 10.0 mmol), treated *in vacuo* in a Rotaflo tube (c. 100 cm³) at 100 °C (7 d), gave unchanged hydrogen chloride (0.91 g, 24.9 mmol, 83% recovered) and a mixture of a non-volatile liquid and carbonaceous material which was separated by preparative-scale GLC (6 m OVI at 80 "C) to afford unchanged silacyclobutane 9 (0.37 g, 1.3 mmol, 13% recovered) and {2-[bis(trifluoromethyl)amino-oxy] propyl}dichloromethylsilane (14) (1.40 g, 4.3 mmol, 49%).

(b) With hydrochloric acid

The silacyclobutane 9 (1.20 g, 4.2 mmol) was added dropwise to stirred concentrated hydrochloric acid (5 cm^3) at 0 °C, and the resulting solution heated at 60 "C (12 h) and then cooled. Extraction with diethyl ether $(3 \times 2 \text{ cm}^3)$ followed by washing with water $(3 \times 2 \text{ cm}^3)$ cm3), drying (MgSO,) and removal of the solvent *in nacuo* gave a colourless oil identified as poly-{2-[bis- (trifluoromethyl)amino-oxylpropyllmethylsiloxane (15) (0.98 g, 85%) [Analysis: Found: C, 26.4; H, 3.3%; M, 890. Calc. for $(C_6H_9F_6NO_2Si)_3H_2O$: C, 26.2; H, 3.3%; M, 8251 by a comparison of its IR, 'H, "F NMR and mass spectra with those reported previously [3].

Reactions of mercury(II) bis(trifluoromethyl)amino-oxyl (26)

(a) With 1, I-dichloro-I-silacyclobutane (2)

(1:l molar ratio)

A mixture of silacyclobutane 2 (0.71 g, 5.0 mmol) and mercurial 26 (2.68 g, 5.0 mmol), shaken at room temperature (12 h), gave volatile material which was separated by GLC methods $(3.5 \text{ m} \text{ SE}30 \text{ at } 80 \text{ °C})$ to afford unchanged silacyclobutane 2 (0.13 g, 0.9 mmol, 18% recovered) and l,l-bis[bis(trifluoromethyl)aminooxy]-1-silacyclobutane (29) (nc) (1.50 g, 3.7 mmol, 90%) (Analysis: Found: C, 20.8, H, 1.6; F, 56.1%. $C_7H_6F_{12}N_2O_2Si$ requires: C, 20.6, H, 1.5; F, 55.7%), b.p. 145 °C. ¹H NMR (neat) δ : 1.86 (complex, 3CH₂) ppm. ¹⁹F NMR δ : +8.0 [s, 2(CF₃)₂NO] ppm. MS *m*/z: 238 {3.4%, [M - (CF₃)₂NO]⁺]; 174 (3.6, $C_3H_4F_4NOSi^+$; 150 (11.3, $C_2HF_5NO^+$); 114 (25.2, $C_2F_4N^+$); 83 (16.4 CF_3N^+); 69 (100.0, CF_3^+); 47 (12.1, FSi⁺); 41 (49.7, $C_3H_5^+$).

(b) With 1, I-dichloro-I-silacyclobutane (2) (1:2 molar ratio)

A mixture of silacyclobutane 2 (1.42 g, 10.0 mmol) and mercurial 26 (2.68 g, 5.0 mmol), shaken at room temperature (12 h), gave volatile material which was separated by GLC methods (3 m SE30 at 80 "C) to afford unchanged silacyclobutane 2 (0.65 g, 4.6 mmol, 46% recovered), the disubstituted silacyclobutane 29 (1.66 g, 4.1 mmol, 76%) and l-[bis(trifluoromethyl)amino-oxy]-1-chloro-1-silacyclobutane (28) (nc) (0.33 g, 1.2 mmol, 22%) (Analysis: Found: C, 22.2; H, 2.3; F, 42.1%. C,H,ClF,NOSi requires: C, 21.9; H, 2.2; F, 41.7%), b.p. 126 °C. ¹H NMR (CDCl₃) δ : 1.88 (complex, $3CH_2$) ppm. ¹⁹F NMR δ : +8.1 [s, 2(CF₃)₂NO] ppm. MS *m/z:* 169 (3.0%, C,HF,NO+); 150 (7.1, $C_2HF_NO^+$; 81 (22.3, $C_2F_3^+$); 69 (100.0, CF_3^+); 63/ 65 (30.9, ClSi⁺); 41 (55.3, C₃H₅⁺).

(c) *with I-chloro-I-methyl-I-silacyclobutane (3) (1:2 molar ratio)*

A mixture of silacyclobutane 3 (1.90 g, 15.6 mmol) and mercurial 26 (4.20 g, 7.8 mmol), shaken at room temperature (12 h), gave volatile material (3.7 g) which was separated by preparative-scale GLC (6 m OVI at 75 "C) to afford unchanged silacyclobutane 3 (0.20 g, 1.7 mmol, 11% recovered) and l-[bis(trifluoromethyl)amino-oxy]-1-methyl-1-silacyclobutane (27) (nc) (3.47 g, 13.7 mmol, 98%) (Analysis: Found: C, 28.7; H, 3.8; F, 45.1%. C₆H₉F₆NOSi requires: C, 28.5; H, 3.6; F, 45.1%), b.p. 115 °C. ¹H NMR (neat) δ : 1.70 (complex, 6H, 3CH₂); 0.42 (s, 3H, CH₃) ppm. ¹⁹F NMR δ : +8.0 [s, (CF₃)₂NO] ppm. MS *m*/z: 161 (4.9%, $C_2H_3F_4NOSi^+); 146 (15.1, CF_4NOSi^+); 114 (33.1,$ $C_2F_4N^+$; 109 (18.4, $C_3H_7F_2Si^+$); 90 (18.4, $C_3H_7FSi^+$); 85 (16.8, $C_4H_9Si^+$); 81 (100.0, $CH_3F_2Si^+$); 79 (67.8, CHF₂Si⁺); 77 (67.8, C₂H₆FSi⁺); 69 (69.9, CF₃⁺); 53 $(44.5, C₂HSi⁺)$; 47 (57.0, FSi⁺); 43 (35.5, CH₃Si⁺); 41 $(49.7, C_3H_5^+).$

Results and discussion

The reactions of oxyl 1 with the silacyclobutanes 2 and 3 and the 1,3-disilacyclobutane 4 were first investigated to determine where attack by the oxyl took place and whether silacyclobutanes containing $(CF₃)₂NO$ groups were formed in good yield and could be isolated readily. The results obtained are shown in Table 1.

Silane	Molar ratio silane: 1	Recovered silane (%)	Products $(\%)^a$			
				ь		Others
$\mathbf{2}$	1:1	56.5	49	trace		8, $38.5(87)^b$
3	1:1	51	51	trace	trace	9, 40(82); 10, $8(8)^c$
4	2:1	82	36	17	19	$CO2$, 18; 12, (6); 13, 18(51)

TABLE 1. Reaction of the oxyl $(CF_3)_2NO \cdot (1)$ with silacyclobutanes at room temperature

"Yields based on reactant 1; figures in parentheses are yields based on silane used, i.e. not recovered.

^bSmall amount of the oxadiazapentane $(CF_3)_2NON(CF_3)_2$ also formed.

'Compound 10 underwent partial rearrangement to the 2-silatetrahydrofuran 11 on GLC separation (90 "C).

(12) *(13)*

The 3-[bis(trifluoromethyl)amino-oxy]-l-silacyclobutanes 8 and 9 were identified by their NMR spectra. Compound 9 was formed as a mixture of two isomers **9a** and **9b** (2:1 ratio) as shown by two separate ${}^{1}H$ NMR absorptions for the methyl hydrogens, but it was not possible to determine which was the major isomer. The presence in the 'H NMR spectra of absorptions at δ_{H} c. 4.8 [pentet, 1H, CH₂-CH(O-)CH₂-, J=7 Hz] and c. 2 (complex, 4H, $2CH_2Si$) ppm and an absorption in the ¹⁹F NMR spectra at δ_F 9.8-9.9 [β - $(CF_3)_2NO$ ppm proved conclusively that the $(CF_3)_2NO$ group was in the 3-position in both compounds.

Further confirmation of the structure of compound 9 was obtained from its reactions with hydrogen chloride and concentrated hydrochloric acid. The reaction with hydrogen chloride (1:3 molar ratio) at 100 "C afforded ${2-[bis(trifluorometry])}$ amino-oxy ${propy}$ }methyldichlorosilane (14) (49%) via $Si-C$ bond cleavage and this compound was identified by a comparison of its IR, ¹H, ¹⁹F NMR and mass spectra with those of the same compound synthesised by the reaction of oxyl **1** with the dialkyldichlorosilane Pr"SiMeC1, [3]. On reaction with concentrated hydrochloric acid, the polysiloxane **15** $(n = 3, 85\%)$ was formed and this gave spectral data $(IR, {}^{1}H, {}^{19}F$ NMR and mass) which were identical to those of polysiloxane 15 ($n = 4$) produced by hydrolysis of the dichlorosilane 14 with water [3].

(CF₃)₂NOCHMeCH₂SiMeCl₂
\n(14)
\nHO
\n
$$
\begin{bmatrix}\nCH_2CHMeON(CF_3)_2 \\
Si & - & - & -\\
M_e & & \n\end{bmatrix}
$$
\nH
\n(15)

The higher-boiling mixture (8%) separated by GLC (90 "C) from the reaction involving silacyclobutane 3 was identified as a 2:l mixture of the 2,3-disubstituted

Scheme 1.

silacyclobutane 10 and the isomeric 2-silatetrahydrofuran **11** (formed by thermal rearrangement of **10)** by the NMR data obtained, i.e. δ_H 6.20 (1H, N-CH-O in **11**), 4.05 (5H, α and β >CH-O in 10 and 11); 1.20 **(6H,** CH,Si in 10 and **11); 0.38 (9H, CH,Si in 10** and **11**) ppm and δ_F + 20.5 [6F, (CF₃)₂N in **11**]; +8.5 [18F, β -(CF₃)₂NO in **10** and **11**]; +7.8 [12F, α -(CF₃)₂NO in 10] ppm.

Products 8 and **11 are considered** to have been formed as shown in Scheme 1.

Initial attack by oxyl 1 on the silacyclobutanes 2 and 3 gave the β -radicals 16 which were captured by oxyl 1 to afford compounds 8 and 9. With β -radical 16b, hydrogen abstraction by oxyl 1 leading to the silacyclobutene 17 competed to a small extent with coupling to give 9. The α , β -disubstituted cyclobutane 10 was

Scheme 2.

then formed by addition of oxyl 1 across the double bond of silacyclobutene 17. It is considered far less likely that compound 10 was formed via hydrogen abstraction from the 2-position of silacyclobutane 3 to give the α -radical 18 which then underwent further abstraction leading to silacyclobutene 17. This is because radical **18** would also have been expected to couple with oxyl 1 to afford the 2-substituted silacyclobutane 19 which was not detected in the products.

The thermal rearrangement of 10 to 11, via a fourcentre transition state, parallels the thermal rearrangement of other alkylsilanes substituted by the $(CF_3)_2NO$ group on a carbon α to silicon reported previously $[2-4]$.

Hence, all the products 8–11 can be explained by exclusive abstraction of hydrogen by oxyl 1 from the 3-position leading to the β -radicals 16. It is considered that the reasons for β -attack are that (i) the α -positions are deactivated due to the steric bulk of the groups on silicon and repulsion between the lone pairs on chlorine and those on the attacking oxyl 1 and (ii), perhaps more importantly, the β -radicals 16 are hyperconjugatively stabilised by four β -hydrogens while the α -radicals 18 are hyperconjugatively stabilised by

Scheme 3.

only two β -hydrogens. These factors have been advanced previously to explain the results obtained from oxyl 1 attack on the alkylsilanes RSiF, [2], RSiCl, [2] and R_2SiCl_2 [2, 3].

From the reaction of oxyl 1 with disilacyclobutane 4, compounds containing $(CF_3)_2NO$ groups bonded to carbon were not detected and the 1,3-disilapentanes 12 and 13 were the only silicon-containing products isolated; appreciable amounts of the decomposition products $CO₂$, amine 6 and azapropene 7 were also formed.

The disilanes 12 and 13 were characterized by their NMR spectra, i.e. for 12; $\delta_{\rm H}$ 0.50 (d, 12H, 2SiMe₂, J_{F-H} =8 Hz); 0.20 (t, 2H, SiCH₂Si, J_{F-H} =8 Hz) ppm and δ_F -75 (nonet, SiF, $J_{Me-F} \simeq J_{CH_2-F} = 8$ Hz) ppm which is consistent with the formula $Me₂SiFCH₂SiMe₂F$ and for 13; δ_H 0.48 (complex, SiMe₂ and SiCH₂Si) ppm with an absence of absorption at c . 4 ppm expected for CHON(CF₃), and δ_F + 8.5 [s, 6F, ON(CF₃),]; -75.2 (nonet, $Me_2SiF-CH_2$, $J_{Me-F} \approx J_{CH_2-F}=8$ Hz) ppm which is consistent with the formula (CF_3) , NOSiMe₂CH₂-SiMe,F.

The observed products $CO₂$ and compounds 5–7, 12 and 13 can be rationalized as being formed via initial attack at a CH, group leading to the monosubstituted compound 20, followed by abstraction of the methine hydrogen to give the intermediate radical 21, the precursor of the α , α -disubstituted disilacyclobutane 22. Decomposition of radical 21 and/or the disilacyclobutane 22 then occurred via a six-centre transition state leading to the silyl ester 23 as shown in Scheme 2.

Although decomposition of ester 23 via a six-centre transition state would give the difluorodisilane 12, the products including 12 can be explained by decomposition of 23 by a radical mechanism to afford the silyl radical 24, the $(CF_3)_2N$ radical and carbon dioxide. Trapping of the silyl radical 24 by oxyl 1 gave the disilane 13, while coupling with the $(CF_3)_2N$ radical led to compound 25 containing a $(CF_3)_2N$ group bonded to silicon. Compounds analogous to 25 have been found to be unstable and to decompose via a four-centre transition state to give azapropene 7 and a fluorosilane [lo]. The remaining product amine 6 was formed by hydrogen abstraction by the radical $(CF_3)_2N$.

The surprising feature of the reaction was the reactivity of the monosubstituted compound 20 towards further attack by oxyl 1 even though the reaction was carried out using an excess of disilane 4.

The mercurial $[(CF_3)_2NO]_2Hg$ (26) has been used widely for the replacement of halogen by the (CF_3) , NO group and reaction with the silane $CISiMe₃$ has been reported to give the compound $(CF_3)_2$ NOSiMe₃ in high yield (94%) [l].

In the present work, treatment of the monochlorosilacyclobutane 3 with mercurial 26 (2:l molar ratio) at room temperature gave unchanged 3 (10% recovered) and the substitution product 27 (98%). An analogous reaction with the dichlorosilacyclobutane 2 gave unchanged 2 (46% recovered), the monosubstitution product 28 (22%) and the disubstitution product 29 (76%), while use of a 1:l molar ratio of reactants afforded unchanged 2 (18% recovered) and compound 29 (90%). The products are presumably formed via a four-centre transition state with the driving force for the reaction being the formation of strong $Si-O$ and $Hg-Cl$ bonds (Scheme 3).

The ease of formation of the disubstitution product 29 relative to that of the monosubstitution product 30 can be explained by the $(CF_3)_2NO$ group having a

larger electron-withdrawing $-I$ effect than chlorine, thus rendering the silicon atom more electron-deficient in the monosubstitution product 30 than in the reactant silacyclobutane 2 and hence more susceptible to nucleophilic attack.

Acknowledgement

We thank Professor R.N. Haszeldine for his interest in this work.

References *8*

1 R.N. Haszeldine, D.J. Rogers and A.E. Tipping, J. Chem. *Soc., Dalton Trans., (1975) 2225.*

- R.N. Haszeldine, D.J. Rogers and A.E. Tipping, J. *Chem. Sot., Dalton Trans., (1976) 1056.*
- G.E. Ducker and A.E. Tipping, J. Fluorine *Chem.,* 66 (1994) 253.
- R.N. Haszeldine, D.J. Rogers and A.E. Tipping, J. *Organomet.* Chem., 54 (1973) C5.
- R.E. Banks, R.N. Haszeldine and M.J. Stevenson, J. *Chem. Sot. C, (1966) 901.*
- 6 H.J. Emeléus and P.M. Spaziante, *Chem. Commun.*, (1968) 770; H.J. Emeléus, J.M. Shreeve and P.M. Spaziante, *J. Chem. Sot. A, (1969) 431.*
- *7* G.K. Menzie, J.W. Ryan and J.L. Speier, J. *Am. Chem. Sot., 82 (1960) 3601.*
- M.T. Burke, R. Damrauer, R.A. Davies, G.T. Goodman and R.A. Kam, J. *Organomet. Chem., 43 (1972) 121.*
- W.H. Knoth and R.V. Lindsey,1 Org *Chem., 23 (1958) 1392.*
- H.G. Ang, J. *Chem. Sot. A, (1968) 2734.*